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 88.70 Some impossible constructions in elementary
 geometry

 Undergraduate abstract algebra textbooks usually include a discussion
 of the three classical constructions: trisecting an angle, doubling the cube,
 and squaring the circle, by straight-edge and compass alone (see, e.g., [1, 2,
 3, 4]). Indeed, such a discussion demonstrates how the purely algebraic
 concept of extension fields can be used to settle in the negative three
 geometric problems that remained open for over 2000 years. In this note we
 show, in a way accessible to undergraduate mathematics students, that the
 following construction problem (*) is likewise impossible:

 Given a non-circle conic and any point P in its plane, to construct by
 straight-edge and compass alone the line PM where M is the point on the
 conic whose distance from P is minimum.

 Of course, if the conic were a circle, the construction of PM would be
 straightforward, and so the problem illustrates an elementary aspect of
 circles that is not generally shared by ellipses. (Another aspect that general
 ellipses do not share with circles is the computation of the perimeter: while
 this is easy for circles, the case of ellipses is an entirely different story, and,
 as is well known, involves such advanced concepts as elliptic integrals.) It
 is worth mentioning perhaps that the impossibility of our minimisation
 problem (*) follows, in the case of the ellipse or the hyperbola, from the
 impossibility of the first classical problem (angle trisection), while the case
 of the parabola follows from the second classical problem (cube
 duplication). It may also be of pedagogical interest to note that the
 arguments we use are very elementary, and bring together basic notions
 from algebra, calculus, geometry and trigonometry. For some similar
 straight-edge and compass constructions, we refer to [5] and [6] on Al-
 Hazen's Problem, and to [7] on the construction of minimal chords in a
 parabola.

 A real number is constructible if it can be obtained from rational

 numbers by means of a finite number of operations, each of which is one of
 the operations +, -, x, - of elementary arithmetic, or extraction of a square
 root. For details the reader should consult any of the first four references
 below. In particular, we will make use of the following definitions and
 propositions (see [3, pp. 544-546]):
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 1. The set of constructible numbers is a subfield of R.

 2. A point (a, b) is constructible (or located) in the Euclidean plane if a
 and b are constructible.

 3. A line segment is constructible in the Euclidean plane if its endpoints
 are constructible.

 4. An angle 0 is defined to be constructible if cos 0 (or, equivalently, sin 0)
 is constructible.

 (Note that the angle whose radian measure is z is constructible although
 the number z itself is not, since circles cannot be squared.)

 5. The angle zr/9 is not constructible (i.e. the angle jr/3 cannot be
 trisected).

 6. 1/2 is not constructible (i.e. cubes cannot be doubled).

 Let us first show that there exists an ellipse with constructible major and
 minor axes and a constructible point in the plane of the ellipse for which
 problem (*) is impossible. Suppose that we set up an xy-coordinate system
 so that the ellipse is centered at the origin, its major axis is horizontal and
 has length 2a, its minor axis is vertical and has length 2b, the given point P
 with coordinates (r, s) is in the first quadrant (so the closest point on the
 ellipse to P is in the first quadrant), and a, b, r, s are constructible real

 x2 y2
 numbers. The ellipse has equation + = 1, and, if M is any point a2 b2
 (x, y) on the ellipse, andf (x) is the square of the distance PM then

 f(x) = (x - r)2 + (y - s)2 = (x - r)2 + (b a2x2 -
 a

 (0 < x < a). We take the positive root, since M is in the upper half plane.
 For the minimum off to occur at x, we must havef' (x) = 0. i.e.

 _(i ) a - - bs
 x \ a2 aV/a2 - x2'

 It follows that0 < x < a. Putx = acos0,0 < < r/2, toget

 (a2 - b2) sin 0 cos0 = ar sin 0 - bs cos 0. (1)
 (Note that when a = b, i.e. in case of a circle, tan = s/r, and the
 required construction of the line PM is straightforward.)

 If the line PM could be constructed by straight-edge and compass, then
 x, and therefore 0, would be constructible. Suppose we can choose a, b, r, s
 so that

 2ar . 2bs
 cos a = 2 and sin a = a2

 a2 - b2 a2 - b2

 for some a in (0, r/ 2), then (1) yields sin 20 = sin (0 - a), and so, either
 20 = 0 - a + 2kJr or 20 = -(0 - a) + (2k + 1)rt, for some integer k. Since
 both 0 and a are in the first quadrant, we obtain 20 = nr - ( - a), i.e.
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 0 = 3 + 3. Thus a/ 3 would be constructible. It is now easy to check that
 ifa = 3, b = 1, r = 2/3, s = 23, then cosa = and sin a = , i.e.
 a = nr /3. But we know that the angle z /3 cannot be trisected,
 contradicting that a/ 3 is constructible. This means that it is impossible to
 locate (in the sense explained in [1] and [3]) the point on the ellipse
 x2 2
 - + y = 1 nearest to the point P(2/3, 2XV), or, equivalently, the normal
 9

 x2

 lines from the point (2/3, 2X/3) to the ellipse - + y= 1 are not
 9

 constructible.

 x2 y2
 Starting with the equation a2- b = 1 of a hyperbola where a and b are

 constructible real numbers, an argument similar to the one above (using
 x = a sec 0) shows that it is impossible to locate the point on the hyperbola
 x2 - y = 1 nearest to the point (8, 2/3).

 We next show that there exists a parabola with a horizontal
 constructible directrix and constructible focus for which problem (*) is
 impossible. As in the case of the ellipse, suppose that we set up an xy-
 coordinate system so that the vertex of the parabola is at the origin, its
 directrix has equation y = -p, and its focus is at (0, p), where p is a positive
 constructible number. The parabola then has equation 4py = x2, and for
 any points P (r, s) in the plane and M (x, y) on the parabola, the square of the

 distance PM is g(x) = (x- r)2 + (y-s)2)22 + - -s If the

 minimum of g occurs at x then g' (x) = 0, i.e. x3 + 4p(2p - s)x - 8p2r = 0.
 The choice p = ?, r = s = 1, leads to the equation x3 - 2 = 0, which,
 as we know, does not have a constructible root. This means that it is
 impossible to locate the point on the parabola 2y = x2 nearest to the point
 (1, 1) by straightedge and compass alone, or, equivalently, the normal line
 from the point (1, 1) to the parabola 2y = x2 is not constructible.
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 88.71 Aubel's theorem revisited

 Let P, Q, R, S be the centres of the outward facing squares attached to
 sides AB, BC, CD, DA of a general quadrilateral ABCD, respectively.
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 FIGURE 1

 The theorem states that PR is perpendicular and equal to QS (see [1]).

 So, how large is PR relative to ABCD? To answer this question we first
 attach the points P, Q, R, S to the coordinate axes, taking P = P(0, p),
 Q = Q(-q, 0), R = R(0, -r) and S = S(s, 0). We also take
 A = A(xa, Ya), B = B(Xb, Yb), C = C(Xc, Yc), D = D(xd, Yd).

 Now to find the equations relating the coordinates of the points A, B, P,
 say, we may suppose without loss of generality that A and B lie in the first
 quadrant as shown in Figure 2 below. When this is not the case, it is easy to
 check that the equations which follow are still correct.
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